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Abstract. Non-equilibrium molecular dynamics is used to investigate the energy transport in
both disordered and anharmonic linear chains under thermal stress by analysing the contribution
to thermal flow of the vibrational normal modes. A thermal balance of the normal-mode energy
is built up by considering the anharmonic interaction and the coupling with the reservoirs.
The non-equilibrium normal-mode dynamics is studied and it is shown that, for both harmonic
and anharmonic systems, the steady-state lattice thermal conductivity is described by a set of
stationary normal modes with broadened and overlapping Fourier spectra. The origin of the
thermal gradient is discussed. Because of the small number of atoms the bulk conductivity
cannot be established.

1. Introduction

It is well known that in dielectric solids the heat carriers are the vibrational excitations
which are not exactly particle-like, as in classical gases or liquids. Whereas the Boltzmann
theory has been successfully applied by Peierls [1] (in order to explain the lattice thermal
conductivity in crystalline and isotopically disordered solids [2, 3]), this approach becomes
less tractable when the disorder cannot be considered as a simple perturbation, as for example
is the case for glasses. In fact, although there is general agreement on the temperature
dependence of the conductivity of amorphous solids up to 10 K, this is no longer the case
at higher temperatures where a phonon-like scattering description is probably inappropriate.

An alternative approach to the Peierls–Boltzmann theory was proposed by Lebowitz
and co-workers who studied the non-equilibrium stationary state by means of Gibbs-type
ensembles [4]. In this approach the stationary state is maintained by stochastic impulsive
interactions between the system particles and the particles of two or more heat reservoirs at
different temperatures. This analytical method was successfully applied to study the classical
thermal conductivity of the fixed ends of harmonic ordered linear chains [5], predicting
zero temperature gradient (except at edges, where a paradoxical exponential behaviour was
found) leading to an infinite thermal conductivity. Nevertheless, the limitations of the
analytical approach become apparent when the anharmonic interaction is present. Visscher
and co-workers [6] (see also reference [7]) performed a numerical simulation based on this
theory. They studied the thermal flow in mass-disordered linear chains and found that when

‖ E-mail: frizzera@science.unitn.it.

0953-8984/97/4910867+13$19.50c© 1997 IOP Publishing Ltd 10867



10868 W Frizzera et al

the disorder is sufficiently strong, anharmonicity enhances thermal conductivity, contrary
to what is observed for crystalline solids. This effect is attributed to the phonon-assisted
hopping of the localized normal-mode energy, and whether or not it is responsible for the
increase of the thermal conductivity above 10 K for amorphous solids still remains a point
of debate [8–15]. Matsuda and Ishii [16] performed a theoretical investigation of the normal
modes in a one-dimensional isotopically disordered chain. They found an exact expression
in closed form for the thermal conductivity in the isotopically disordered harmonic chain.
Non-equilibrium molecular dynamics has subsequently been applied for both one- and two-
dimensional systems to test the independence of the thermal conductivity coefficient of the
number of particles, the ergodic behaviour etc [17].

The purpose of this paper is to study the problem of thermal conductivity by means of
a harmonic analysis of the energy, through the investigation of the normal-mode dynamics
and the contribution of the modes to the energy transport. Section 2 gives an outline of the
method of simulation used. In section 3.1 we discuss the results of the numerical analysis of
thermal flow in harmonic chains. In section 3.2 we consider the effects of the anharmonicity
on disordered linear chains. In section 3.3 we study the effects of the thermal reservoirs on
the normal-mode dynamics and section 4 is devoted to the conclusions.

2. Outline of the method

In this section we describe the model and give a brief outline of the non-equilibrium
molecular-dynamics method which has been clearly explained in reference [6].

We consider a fixed-end linear chain ofN massesmi (i = 1, . . . , N) which can be
described by the Hamiltonian

H =
N∑
i=1

1

2
miv

2
i +

γ

2

N∑
i=0

(ui+1− ui)2+ µ
3

N∑
i=0

|ui+1− ui |3 (1)

whereui is the scalar displacement of the massmi from its equilibrium position (u0 =
uN+1 = 0), and γ and µ are the harmonic and anharmonic potential coefficients, resp-
ectively, which can be derived via an expansion of the Lennard-Jones potential [6]. In
order to introduce anharmonicity while avoiding the melting of the system, we choose an
even cubic anharmonic potential. The stationary state is maintained by replacing the velocity
of the end atoms according to the Maxwell distribution

nα(w) =
(

Mα

2πkBT
(R)
α

)1/2

exp

(
− Mαw

2

2kBT
(R)
α

)
(2)

whereT (R)α (α = 1, N ) are the temperatures of the thermal reservoirs andMα is the mass
of the atoms of theαth reservoir. Successive replacement velocities are chosen each time
at random from the entire range of the distribution. The massesMα have been taken to be
equal to the end massesmα. Because the distribution equation (2) is zero-centred, the sign
of the gas mass velocitiesw is randomized, and thus the end particles experience collision
with a vanishing average momentum. The time intervals between successive changes are
chosen each time at random in the interval [λ−1

a , λ
−1
b ], corresponding to an average coupling

λ̄−1 = (λ−1
a + λ−1

b )/2. This procedure is useful in studying the limit of small coupling
coefficients (λ → 0), for avoiding finite-size effects. Initial positions and velocities are
chosen randomly. The dynamical values and parameters are expressed in the units specified
in reference [6] where the Boltzmann constantkB and the harmonic coefficientγ are set to
unity.
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3. Results and discussion

3.1. Mode flow analysis

In this section we investigate the contribution of the vibrational normal modes to the thermal
flow in the non-equilibrium steady state. The method presented in this paper is applied to
the linear chain; however, it may also be applied to systems of higher dimensionality taking
into account that the time necessary for the calculation is proportional toN2.

The normal real coordinates are defined by

Qk(t) =
N∑
i=1

√
miηikui(t) (3)

Pk(t) =
N∑
i=1

√
miηikvi(t) (4)

where theηik are the eigenvectors, with eigenvaluesω2
k , of the dynamical matrix of the

harmonic Hamiltonian, withµ = 0 in equation (1). For the fixed-end chain these are given
by

ηik =
√

2

N + 1
sin(qkia) ωk = 2

√
γ

m
sin

(
qka

2

)
(5)

with

qk = π

(N + 1)a
k k = 1, . . . , N. (6)

When disorder is present they are obtained by numerical diagonalization. Due to the
orthonormality of the eigenvectors the linear transformation equations (3) and (4) can be
inverted and when substituted in equation (1) they diagonalize the harmonic contribution:

H = 1

2

N∑
k=1

(P 2
k + ω2

kQ
2
k)+

µ

3

N∑
i=0

|ui+1− ui |3 (7)

whereHk = 1
2(P

2
k + ω2

kQ
2
k) is the energy of the modek if the system is harmonic. In

ordered chains we putmi = 1 (i = 1, . . . , N), and disorder is randomly introduced by
isotopic impurities of mass 3. Thus, since the harmonic forceγ is set to be unity, the
frequencies will always be less thanωs = 2.

We now consider the harmonic chain (µ = 0) in thermal contact with the two reservoirs
at different temperaturesT (R)1 andT (R)N (T

(R)
N > T

(R)

1 ) characterized by the Maxwell dist-
ribution equation (2). Between the collisions, when the system is isolated and in the
absence of anharmonicity, the normal coordinates follow the Heisenberg equations of motion
(Pk = Q̇k):

Q̈k(t)+ ω2
kQk(t) = 0 (8)

P̈k(t)+ ω2
kPk(t) = 0. (9)

We note that if the eigenpairsηik andωk are known, the temporal evolution can be calcul-
ated for given initial conditions using three steps: the linear transformations (3) and (4), the
equations of motion (8) and (9), and finally the inverse transformations:

ui(t) = 1√
mi

N∑
k=1

ηikQk(t) (10)

vi(t) = 1√
mi

N∑
k=1

ηikPk(t). (11)
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Thus the time interval between collisions when the system is isolated can be covered with
just one dynamical step, leading to a computing time∝ N2. In harmonic systems this
method represents an alternative way of integrating the equations of motion without using
the step-by-step finite-difference methods (see references [18, 19]). However, it is only
applicable if the eigenvectors and the eigenvalues of the dynamical matrix are known.
Consequently it requires a diagonalization and it is only applicable to systems having a
small number of particles. The advantage of this method is that it only introduces round-
off errors and it is very effective, especially if one wants to increase the time interval
between the collisions (λ → 0). In the anharmonic chain we use a fourth-order Runge–
Kutta algorithm with a time step dt = 0.01 in order to solve the equations of motion step
by step (higher frequencies are typically 2).

Because of the linear transformations given by equations (3) and (4) it is possible using
molecular dynamics to compute at any time the mode energyHk given in equation (7).
Specifically, at each collision the mode energyHk changes because of the abrupt variations
in boundary mass velocity. This can easily be seen from equations (4) and (7). The
collisions maintain the particle positions unaltered and thus also the potential contribution
ω2
kQ

2
k/2 to the mode energyHk. Conversely the kinetic contributionP 2

k /2 changes and
thus the integrated flows for the modek at the end(α) of the chain are given by

8
(α)
k (t) =

∑
coll.(α)

(
1

2
P ′2(α)k −

1

2
P 2
(α)k

)
(12)

where the sum is over the collisions at the endα = 1 or at α = N up to time t , and
P ′(α)k andP(α)k are given by equation (4), respectively after and before the collision at the

end(α). The integrated mode flows8(α)
k (t) show a good linear time dependence when the

steady state is achieved, and the mode flowsJ
(α)
k are the average slopes of the8(α)

k (t):

J
(α)
k =

〈
d

dt
8
(α)
k (t)

〉
t

(13)

where〈· · ·〉t indicates the time average. Using the orthonormality of the eigenvectors it is
not difficult to show that

N∑
k=1

8
(α)
k (t) =

∑
coll.(α)

(
1

2
mαv

′2
α −

1

2
mαv

2
α

)
= 8(α)(t) (14)

where the8(α)(t) are the integrated flows.
Let us consider an ordered chain ofN = 50 masses with a coupling constant between

λa = 0.033, corresponding to one collision every1t = 30, andλb = 0.017, corresponding
to one collision every1t = 60 (that is,λ−1 is in the interval [30, 60] and λ̄−1 = 45),
representing a small coupling coefficient (if the lattice constant is set to unity, the velocity
of sound isvs = 1 and the chain length isL = 50). After allowing an initial period to
establish the steady state the integrated mode flows were calculated using equation (12) for
approximately 2.2× 107 collisions at both ends, corresponding to a running timeT ≈ 109

and to an integrated energy flow|8(α)(T )| ≈ 3×108. The bath temperatures wereT (R)1 = 25
andT (R)N = 75.

Matsuda and Ishii [16] (see also references [20–22]) determined theoretically an
expression for the mode flowsJk in the harmonic, fixed-end linear chain in the limitλ→ 0:

J (λ,N) = λ(T (R)N − T (R)1 )

N∑
k=1

η2
1kη

2
Nk

η2
1k + η2

Nk

(15)
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Figure 1. Mode flows J (N)k in the harmonic chain ofN = 50 masses and with reservoir

temperaturesT (R)1 = 25 andT (R)N = 75. (a) A chain without mass disorder (mi = γ = 1)
and with λ−1 in the interval [30, 60] and λ̄−1 = 45. The bars ending with open circles
indicate the results of the simulation. The solid line interpolating between the circles is given by
equation (15). (b) A 50% randomly disordered chain of masses 1 and 3;λ−1 is in the interval
[30, 60] andλ̄−1 = 45. The bars ending with open circles indicate the results of the simulation.
The filled squares interpolating between the circles are given by equation (15). (c) An ordered
chain withλ−1 in the interval [0.8, 1] and λ̄−1 = 0.9.

whereη1k and ηNk are the amplitudes (the end masses are set to unity) of the modek at
the chain ends. The theoretical prediction, equation (15), and the numerical calculation of
J
(N)
k given by equation (13) are shown for the ordered harmonic chain in figure 1(a).

The result is that, in the harmonic systems, each mode gives to the cold reservoir the
same energy as is received from the hot one; that is,J

(1)
k = −J (N)k . Therefore, in finite-

size systems the reservoirs do not couple the modes when the system is purely harmonic
although they do affect the normal-mode dynamics which will be discussed in section 3.3.
This agrees with the fact that the harmonic systems are described by a set of non-interacting
normal modes. Moreover, with fixed boundary conditions low- and high-frequency modes
have small amplitudes at the end sites, and hence they do not contribute appreciably to the
transport. The theoretical prediction, equation (15), and the numerical calculation ofJ

(N)
k

given by equation (13) are shown for a 50% randomly disordered chain in figure 1(b). Thus
equation (15) fits the mode flows very well, demonstrating the validity of both the numerical
and theoretical calculations, the latter based on the IF assumption [16]. In comparison to
the analytical approach (suitable only for 1D and in the limitλ→ 0), the numerical method
has an intrinsic advantage because it is possible to increase the coupling constantλ and, in
principle, it is applicable to both two- and three-dimensional systems as well as anharmonic
systems. For example, in figure 1(c) the mode flowsJ (N)k are shown for the harmonic linear
chain with larger coupling constants:λ−1 in the interval [0.8, 1] and λ̄−1 = 0.9. In the
limit λ→ 0, the flows depend only on the amplitudes of the modes at the boundaries of the
chain, but whenλ increases, the low-frequency modes are relatively effective in carrying
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the energy. This can be intuitively interpreted by means of wave-packet group velocities.
Since the latter is lower in high-frequency modes, more time is needed to carry the energy
out, such that it is returned to the baths.

3.2. The anharmonic flows

Using the variablesPk and Qk defined in equations (3) and (4), an energy balance
is established for the harmonic mode energyHk, which is time dependent due to the
interactions with the reservoirs and anharmonicity.

Let us consider the same disordered chain as in figure 1(b) but with added anharmon-
icity (µ = 0.35 in equation (1)). The mode flows (not reported here) have been computed
as for the harmonic chain, with an inverse coupling coefficientλ−1 in the interval [1.3, 1.5]
(λ̄−1 = 1.4) and approximately 4× 106 collisions at both ends. The bath temperatures
wereT (R)1 = 25 andT (R)N = 75. In calculating8(α)

k (t) using equation (12) it is unnecessary
to assume that the system is harmonic, and the relationship given by equation (14) is still
valid. We observed that in general, due to the anharmonic interaction, some modes receive
energy from the hot reservoir but they do not return the same quantity to the cold reservoir,
and vice versa. That is,J (1)k 6= −J (N)k , which is not the case for the harmonic systems.
It is possible to account for the difference by calculating the anharmonic integrated flows
8
(A)
k (t) defined by

8
(A)
k (t) =

∑
coll.

(H ′k −Hk) (16)

whereHk is the energy of the modek just after a collision andH ′k is the mode energy just
before the next one. The flows8(A)

k (t) differ from the flows8(α)
k (t) because the latter are

computed before and after the same collision. The sum in equation (16) is for collisions at
both ends up to timet . From simulation it is found that, like the8(α)

k (t), the8(A)
k (t) are

linearly increasing functions. This implies that, because of the anharmonicity, a stationary
energy flow between the modes takes place. Moreover, at each simulation step the equality

H(t) = H(0)+8(1)(t)+8(N)(t) (17)

must be satisfied. In equation (17),H(t) andH(0) are the total energies(harmonic+
anharmonic) at time t and immediately after the thermalization att = 0, respectively, and
the8(α)(t) are the integrated flows at timet . Equation (17) is simply the energy balance
of the system. From equation (14), the integrated flows8(α)(t) can be written as sums of
integrated flows relative to the modes, and the balance equation (17) can be shown to be

N∑
k=1

Hk(t)+H(A)(t) =
N∑
k=1

Hk(0)+H(A)(0)+
N∑
k=1

8
(1)
k (t)+

N∑
k=1

8
(N)
k (t) (18)

where the harmonic and the anharmonic contributions toH(t) andH(0) have been explicitly
written out andH(A) is given by the second term in the right-hand side of equation (7). On
the other hand, employing equation (16), a mode balance can be written as follows:

Hk(t) = Hk(0)+8(A)
k (t)+8(1)

k (t)+8(N)
k (t) (19)

whereHk(0) is the energy of the modek at the timet = 0. The balance equation (19)
includes changes in mode energy because of the collisions and the anharmonic interactions.
This balance is also representative for harmonic systems for which8

(A)
k (t) = 0, since the

normal modes do not interact, and the mode energy is conserved between the collisions
when the system is isolated. Because8(A)

k (t), 8(1)
k (t) and8(N)

k (t) are linearly increasing
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time functions and the mode energyHk(t) remains limited, it is seen from equation (19)
that [(8(A)

k (t) + 8(1)
k (t) + 8(N)

k (t))]/t is limited above by a quantity that goes to zero as
1/t in the limit t →∞. Thus by averaging in equation (19), the following balance for the
mode flows is obtained:

J
(A)
k + J (1)k + J (N)k = 0 (20)

where

J
(A)
k =

〈
d

dt
8
(A)
k (t)

〉
t

. (21)

Moreover, by substituting equation (19) into equation (18) we obtain

N∑
k=1

8
(A)
k (t)+H(A)(t) = H(A)(0) (22)

and since the anharmonic energy remains limited, we have [(
∑

k 8
(A)
k (t))]/t → 0 like 1/t

in the limit t →∞. Taking an average derivative of equation (22), we have

N∑
k=1

J
(A)
k = 0. (23)

In conclusion, since in the steady state the mean energies in each mode and the anharmonic
energy do not vary with time, and since the anharmonic energy can be exchanged only with
the modes and not with the heat baths, equations (20) and (23) must follow.

3.3. Steady-state normal-modes dynamics

In sections 3.1 and 3.2 we have considered the thermal flow by analysing how each normal
mode contributes to it. In this section we investigate the following question: how does the
dynamics of the normal coordinates(Qk, Pk) explain the thermal gradient and the stationary
flow?

If the system is harmonic and isolated, the solutions of the Heisenberg equations of
motion for the normal coordinates are given by equations (8) and (9) which represent
harmonic oscillators for bothPk(t) and Qk(t) at frequenciesωk. However, when the
system interacts with an external system such as a heat reservoir, the harmonic equations
of motion are no longer satisfied. It is not possible to keep both the flow and gradient
stationary simply by choosing some particular initial condition(Q0

k, P
0
k ) in equations (8)

and (9). The local temperatureTi can be written using the transformation equation (11) in
terms of normal momentaPk(t):

Ti ≡ 2

〈
1

2
miv

2
i (t)

〉
t

=
N∑

k,k′=1

ηikηik′ 〈Pk(t)Pk′(t)〉t = T (1)i + T (2)i (24)

whereT (1)i andT (2)i are respectively the diagonal and off-diagonal contributions toTi :

T
(1)
i =

N∑
k=1

ηikηik〈Pk(t)Pk(t)〉t (25)

and

T
(2)
i =

N∑
k 6=k′

ηikηik′ 〈Pk(t)Pk′(t)〉t . (26)
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Moreover the instantaneous flow may be calculated by taking the time average of the
expression [1, 23, 24]

J (t) = 1

2N

N∑
i=0

γ [ui+1(t)− ui(t)][vi+1(t)+ vi(t)] (27)

whereN is the dimensionless volume of the lattice (the harmonic force constantγ is set to
be unity). Equation (27) is essentially the quadratic part of the harmonic flow operator as
given by Hardy [25]. Thus, the average flow〈J (t)〉t ≡ J can also be written in terms of
the (Qk, Pk) variables by means of the transformations of equations (10) and (11):

J = 1

2N

N∑
k,k′=1

[
N∑
i=0

(
ηi+1k√
mi+1

− ηik√
mi

)(
ηi+1k′√
mi+1

+ ηik′√
mi

)]
〈Qk(t)Pk′(t)〉t . (28)

Figure 2. (a) The local temperatureTi in the harmonic chain without mass disorder. Here,
N = 100, T (R)1 = 25 andT (R)N = 75, mi = γ = 1, λ−1 is in [1.5, 2], λ̄−1 = 1.75. (b) and
(c) show the diagonal and off-diagonal contributions toTi , respectively (see equations (25) and
(26)). The arrows in (a) indicate the exponential decays observed away from the boundaries.

It appears from equations (24) and (28) that the averages〈Pk(t)Pk′(t)〉t and
〈Qk(t)Pk′(t)〉t are quantities which can be investigated in order to understand the normal-
mode dynamics in the stationary state of the thermal conductivity. This can be done
numerically by calculating the time averages〈Pk(t)Pk′(t)〉t and〈Qk(t)Pk′(t)〉t by sampling
Pk(t) andQk(t), using equations (3) and (4), in regular step intervals. Each signalPk(t)

can be approximated by a truncated Fourier series:

Pk(t) =
Ns−1∑
j=0

cj (k) exp

(
i 2πjt

P

)
(29)

whereNs is the number of samples,P is the time interval chosen arbitrarily for the Fourier
analysis (P was the same for eachk) and cj (k) is the j th complex Fourier component of
Pk(t). If P is sufficiently large, the averages in equation (24) are the overlap integrals of
thePk(t) andPk′(t) Fourier spectra:

〈Pk(t)Pk′(t)〉t =
Ns−1∑
j=0

cj (k)c
∗
j (k
′). (30)
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As shown below, the time averages in equations (24) and (28) have a well defined structure
and do not vanish even ifk 6= k′. From equation (30) it can be seen that the normal modes
k andk′ cannot have Fourier componentscj (k) andc∗j (k

′) which simultaneously vanish for
each indexj ; that is, the normal modesk and k′ must have some common frequency of
vibration. Thus the reservoirs introduce new frequencies in the oscillation spectrum of each
mode, causing degeneracy of the states.

We consider first the ordered chain (mi = 1, i = 1, . . . , N , N = 100) with an inverse
coupling constantλ−1 in the interval [1.5, 2] (λ̄−1 = 1.75) and bath temperaturesT (R)1 = 25
and T (R)N = 75. The averages in equation (24) have been calculated for approximately
1.7×107 samples with a sampling interval1t = 1.5, for a running timeT ≈ 2.6×107, and
what amounts to about 1.5×107 collisions at both ends. In figure 2(a) the local temperature
Ti for the harmonic ordered chain is shown. The local temperature is constant except at the
boundaries, where drops of local temperature above and below the mean temperature, for the
second massi = 2 and penultimate massi = N − 1, respectively, appear. The temperature
decreases exponentially along the chain as indicated by the arrows. This paradoxical result
was first observed by Lebowitz and co-workers [5] theoretically investigating the stationary
state in the harmonic ordered chain. In figure 2(b) the diagonal contributionT (1)i is shown
and it shows a constant profile. This means that the normal modes have a frequency-
independent mean energy〈Pk(t)2〉t , which can be deduced from equations (25) and by
taking into account the orthonormality of the eigenvectors. Figure 2(c) shows the off-
diagonal contributionT (2)i which is responsible for deviations from a uniform temperature
profile.

The averages in equation (24) have a well defined structure. Letδ in 〈Pk(t)Pk+δ(t)〉t be
the index of theδth codiagonal (δ = 0 is the main diagonal) of the matrix(〈Pk(t)Pk′(t)〉t ).
Thus δ = 0, . . . , N − 1 for the upper codiagonals andk = 1, . . . , N − δ is the index
of the corresponding elements. Only odd-delta terms (δ = 1, 3, . . . , N − 1) contribute to
the apparent thermal gradient while the even terms (δ = 2, 4, . . . , N − 2) are vanishing.
Figure 3(a) shows the averages〈Pk(t)Pk+δ(t)〉t with δ = 1, 3, . . . , N − 1. Moreover, the
dips at sitesi = 2 andi = N −1 are due to the hump indicated by the arrow in figure 3(a).
In fact let us consider the sitei = 1. In figure 3(b) the productsη1kη1k+δ with odd δ are
shown. To obtain one half of the off-diagonal local temperature of sitei = 1, we must
multiply and sum term by term all the corresponding points of figure 3(a) and figure 3(b),
as required by equation(26). This summation is negative as shown in figure 2(c) because
of the greater contribution to

∑
ηη〈PP 〉t which comes from terms whereηη is positive and

〈PP 〉t is negative. Figure 3(c) is the same as figure 3(b) except at the sitei = 2. In this
case the productsη2kη2k+δ vanish fork ≈ 50, and the termsηη〈PP 〉t are negligible in this
region. Conversely they become important for smallk where both〈PP 〉t andηη are positive
and the off-diagonal contribution toT2 is positive as shown in figure 2(c). On increasing
the site position the off-diagonal contribution vanishes since the oscillation frequency of the
productsηη increases and thusTi is only determined by the diagonal constant temperature.
On the right-hand side, the behaviour is specular because the productsηη have opposite
signs.

We note that the coherent transport, which leads to a vanishing gradient far from the
boundaries, is equivalent to a lack of correlation between the productsηη and〈PP 〉t [26].
Moreover, it appears that the dips inT2 andTN−1 arise because, in one-dimensional fixed-
end systems, the modes of relatively low frequency (the small-k region in figure 3(a)) tend
to contribute to building up a thermal gradient in a way opposite to that imposed by the
reservoirs. No explanation is given for this paradoxical behaviour.

We now consider the thermal flow. When the system is isolated,Qk(t) and Pk(t)
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Figure 3. Plots for the chain of figure 2. In (a) the averages〈Pk(t)Pk+δ(t)〉t are shown. The
arrow points to the hump which is responsible for the dips inT2 andTN−1 shown in figure 2(a)
(see the text). In (b) and (c) the productsη1kη1k+δ (×102) andη2kη2k+δ (×102), respectively,
are shown. The curves with full circles are relative toδ = 1 and the successive curves correspond
to δ = 3, 5, . . . , N − 1 with k = 1, . . . , N − δ.

satisfy equations (8) and (9) and consequently the averages〈Qk(t)Pk′(t)〉t vanish no matter
how phase relations(Q0

k, P
0
k ) are chosen. Thus, because the averages〈Qk(t)Pk′(t)〉t enter

directly into the expression for the thermal flow, equation (28), a steady thermal flow cannot
be explained by the equilibrium equation of motion for the normal coordinates. This is a
peculiarity of fixed and real free boundary conditions where the normal modes are stationary
waves. However, it is not the case when we impose periodic boundary conditions due to
the fact that the eigenstates can also be travelling waves (phonons) with wave vectorq or
−q, and it is possible to put the system into a state〈Qq(t)P−q(t)〉t = 〈Q−q(t)Pq(t)〉∗t 6= 0,
and equation (28) leads to the diagonality of the heat flow operator [1, 25]:

J = 1

N

∑
q

Hq
∂ω(q)

∂q
(31)

whereHq is the energy of the mode with wave vectorq and∂ω(q)/∂q is its group velocity
[27]. The problem of finding an expression for the thermal flow is simplified by choosing
periodic boundary conditions or, more generally, a travelling-wave picture as noted by
Peierls [28]. Nevertheless it is not possible to fit the mode flows shown in figure 1(a)
by using equation (31). This behaviour originates from the finite width of the frequencies
when the harmonic system is not at equilibrium, and the averages〈Qk(t)Pk′(t)〉t entering
in equation (28) do not vanish because the modes have some degree of degeneracy. The
link with the microscopical analysis of mode flows (see section 3.1) can be obtained by
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numerically summing in equation (28) over labelsi and for examplek′ after the calculation
of 〈Qk(t)Pk′(t)〉t . Thus the flow can formally be considered as a summation of mode
flows, J = ∑

k Jk. These differ by less than 3–4% from the mode flows calculated with
the method described in section 3.1. It is worth noting that the properties of the averages
〈Pk(t)Pk′(t)〉t and 〈Qk(t)Pk′(t)〉t are essentially those of the non-equilibrium correlation
functions 〈vi(t)vj (t)〉t and 〈ui(t)vj (t)〉t , which are related by the definitions of normal
coordinates, equations (3) and (4), and the inverse transformations given by equations (10)
and (11).

Figure 4. (a) The local temperatureTi in the
anharmonic chain without mass disorder. (b) and (c)
show the diagonal and off-diagonal contributions toTi ,
respectively (see equations (25) and (26)).N = 100,
mi = γ = 1, µ = 0.35, T (R)1 = 25, T (R)N = 75, λ−1 is
in [1.5, 2], λ̄−1 = 1.75.

Figure 5. Plots of 〈Pk(t)Pk+δ(t)〉t as in figure 3(a),
but for the anharmonic ordered chain of figure 4.

The numerical method allows general applications not restricted to the one-dimens-
ional harmonic ordered systems. We considered the anharmonic ordered chain with an
anharmonicity coefficientµ of 0.35 in equation (1). The inverse coupling constantλ−1

is in the interval [1.5, 2] (λ̄−1 = 1.75) with numbers of collisions of about 3× 106 and
5× 106, averages taken with a sampling step1t = 1 and bath temperatures ofT (R)1 = 25
andT (R)N = 75. Figures 4(a), 4(b), 4(c) show the local temperatureTi and the diagonal and
off-diagonal contributions toTi , respectively. As in the harmonic chain, the thermal gradient
is completely determined by the off-diagonal contributions. The averages〈Pk(t)Pk+δ(t)〉t ,
with δ = 1, 3, . . . , N − 1, are shown in figure 5. Terms with evenδ (exceptδ = 0) are
still negligible. The curves in figure 5 explain the thermal gradient of figure 4(a). In fact
the averages〈Pk(t)Pk+δ(t)〉t are always negative, contrary to what happens in the harmonic
chain as seen in figure 3(a). Moreover the most important terms are〈Pk(t)Pk+1(t)〉t .
Secondly, the productsηikηik+δ gradually change from completely positive values (i = 1)
to completely negative ones (i = N ) [29]. We conclude that there is a local temperature
determined by the diagonal terms in equation (24) which are essentially thek-independent
mode energies〈P 2

k 〉t . Moreover in going fromi = 1 to i = N we must add to the diagonal
terms the off-diagonal ones whose sign gradually changes. This leads to a non-vanishing
smooth gradient as shown in figure 4(a).
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4. Conclusions

In figure 5 we observe that there is no contribution to the off-diagonal temperature from the
low-frequency products〈PP 〉t . Thus, low-frequency modes do not contribute significantly
to the forming of the gradient. For a given strength of couplingλ, the mode flows
are found to be proportional to the thermal gradient, giving an effective coefficient of
thermal conductivity. However, the flows are generally very sensitive to changes inλ—see,
e.g., figures 1(a) and 1(c)—while the thermal gradient is much less sensitive. Consequently
the effective thermal conductivity coefficient depends strongly onλ. Specifically, it increases
with λ over a wide range.

Whenλ becomes large, the dips inT2 andTN−1 shown in figure 2(a) diminish together
with the hump indicated by the arrow in figure 3(a). At the same time, the curves of
figure 3(a) become similar (with opposite sign) to those of figure 3(b). That is, if i 6= 1 or
i 6= N , theδth codiagonal (〈Pk(t)Pk+δ(t)〉t ) becomes orthogonal to theδth vector (ηikηik+δ),
for eachδ. This has the effect that only the sitesi = 1 and i = N have a temperature
different from the average. Actually, as seen in figure 2(a), this kind of orthogonality is
partially satisfied independently of the strength of the couplingλ. In fact the hump indicated
by the arrow in figure 3(a) is responsible only for the dips observed inT2 andTN−1 and it
does not in practice affect the local temperature which is uniform far from the boundaries.
The different gradient observed in the anharmonic chain can be explained by different
overlapping integrals (from the comparison of figure 5 and figure 3(a)). The orthogonality
of the vectors〈Pk(t)Pk+δ(t)〉t andηikηik+δ is broken by the anharmonic coupling leading
to a non-vanishing thermal gradient.

The method and results should be useful in the extension to two- and three-dimensional
lattices.
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